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Molecular dynamics simulations of hard sphere solidification at constant pressure

T. Gruhn and P. A. Monson
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Molecular dynamics simulations in theNPT ensemble are used to study the dynamics of crystallization
processes in hard sphere systems. The simulation method used permits us to follow the dynamics after a
sudden pressure or temperature quench in a one-step process without the need of extra densification methods.
During the quench a strong correlation between the system density and the crystalline order parameterQ6 is
found. The growth of fcc order in the system over time is observed in detail and compared toQ6(t). We
compare results for the equation of state on the metastable fluid branch with previous results from constant
volume molecular dynamics simulations. Some results for the crystallization of binary hard sphere mixtures are
also presented for a number of different size ratios.
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I. INTRODUCTION

The hard sphere potential is one of the most freque
and thoroughly investigated model potentials for molecu
interactions. In spite of its simplicity it mimics surprisingl
well the properties of simple fluids and colloidal suspe
sions. This is especially true at high densities, where
behavior of real fluids is mainly dictated by short range
pulsive forces rather than longer ranged attractions. Since
first molecular dynamics~MD! simulations in the 1950’s
@1,2# the hard sphere potential has raised a number of in
esting questions, some of which now appear to be answ
while for others definitive conclusions are still lacking. Fir
of all, the hard sphere system analysis revealed strong
dence for the existence of a first-order transition from a d
ordered to an ordered phase simply from short range re
sions@3–6#. Although it is quite clear that hard spheres ha
an ordered phase it took a long time and very careful inv
tigations to estimate the most stable crystalline structure
hard spheres. A number of independent recent studies s
to show that the fcc structure has a slightly lower Helmho
free energy than the hcp crystalline structure@7–11#.

The various equilibrium states of one-component h
sphere systems can be depicted in a phase diagram sho
PEs3/kT versus the volume fractionh. A branch of fluid
equilibrium states starts from low densities and goes t
volume fraction ofh'0.494 whilePEs3/kT increases from
PEs3/kT50 to PEs3/kT'11.59, well described by the
Carnahan-Starling equation@12#. A phase coexistence regio
with constantPEs3/kT'11.59 connects the freezing poin
at the end of the fluid branch with the melting point ath
'0.545 where the fcc solid branch starts@3,4#. On the solid
branch thePEs3/kT value increases with increasing dens
and diverges at the close packed volume fraction ofh
5pA2/6. If a fluid hard sphere system is compressed
yond the freezing point it may follow a fourth branch co
sisting of metastable dense packed fluid states. It is assu
that the metastable branch ends at a volume fractionh
'0.64 where the correspondingPEs3/kT value diverges.
This limit is often denoted as ‘‘random close packing,’’ a
though the existence of a well defined state of random c
packing has been called into question in recent work@13#.
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Much recent attention has been paid to the dense pac
metastable fluid states and the crystallization processes
ated from them@13–16,18–23#.

For volume fractionsh,0.57, metastable states are d
scribed quite well by the Carnahan-Starling equation. Ho
ever, for volume fractions in the range 0.53,h,0.58 the
system easily starts to freeze and does not stay very long
metastable fluid state@15,19,21#. With high compression
rates metastable fluid states with volume fractions hig
than 0.58 can be reached. Metastable states withh>0.57 can
be fitted nicely by a phenomenological equation of state

PEV/NkT5A/~12h/hg!, 0.57>h,hg ~1.1!

with A52.67 andhg50.648 proposed by Speedy@14#. He
suggests that ath'0.57 a second-order phase transition o
curs from a metastable fluid to a glassy state. However
region aroundh'0.57 is difficult to analyze. Slow compres
sions lead to crystallization while for high compression ra
a number of glasses with individual branches were obser
@19#. A quickly compressed system might get stuck at a n
ideal glassy state, i.e., on a fluidlike state that does not h
the lowest possible pressure for the respective volume f
tion. Rintoul and Torquato dispute the existence of a therm
dynamic glass transition@15–17#. They propose that crystal
lization can start from any metastable state though for h
densities it might take a very long time and especially sm
systems might get frustrated by finite size effects. They cla
that signs of crystallization are found for all densities if t
system is chosen large enough. This is in contradiction w
other observations that find that small systems crystal
faster than large ones@18,21,23#. Further analysis of the
crystallization process was done by Richardet al. @21# while
special attention to the time development of different typ
of crystalline order was paid by Kendallet al. @23#.

Computer simulation studies of the thermodynamics
hard sphere solids have been extended to mixtures@24–27#.
In addition to the formation of binary alloys without subs
tutional order, substitutionally ordered solid phases likeAB,
AB2 or AB13 can form, depending on the chosen size ra
a5r B /r A of the componentsA andB. The stability of those
©2001 The American Physical Society03-1
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T. GRUHN AND P. A. MONSON PHYSICAL REVIEW E64 061703
phases has recently been investigated in computer sim
tions @25–27#. Quantitatively accurate theoretical predictio
have also been made@28#.

Much less attention has been devoted to the crystalliza
process in binary hard sphere mixtures. Jacksonet al. @29#
provided evidence of crystallization from Monte Carlo a
MD simulations for several size ratios, but at the time
their work there had yet to be accurate calculations of
solid-fluid phase diagrams. Eldridgeet al. @25# have com-
pared the phase diagrams obtained from computer sim
tions with experimental results. They find that in experime
for size ratios between 0.5<a<0.625 AB13 is found more
often than expected from the phase diagrams. They a
that during the crystallization process in the fluid phase
formation of icosahedral order is strongly favored so that i
likely that a metastableAB13 phase forms in the experimen
since the small spheres in theAB13 phase show icosahedra
order. In a MD simulation where the volume is continuous
reduced, they find that fcc and icosahedral order increa
but they do not see crystallization at the compression r
they used. Trizac and coworkers describe a simulation
starts from a metastableAB structure at a phase point whe
an A crystal coexists with a fluidAB mixture @27#. As pre-
dicted from theory, they observe a phase separation: In s
parts of the system theB component escapes from the crys
structure that becomes a pureA crystal while the rest of the
simulation box is filled with a mixture of theA andB com-
ponents.

Up to now molecular dynamics simulations of crystalliz
tion processes in hard sphere systems have been restric
the NVE ensemble, where the number of moleculesN, the
volume V, and the total energyE is kept fixed. Crystalliza-
tion is induced by a density quenching process for whic
number of sophisticated densification methods@14, 30–32#
have been developed. They all perform a series of sm
density increments while the spheres are moved such
overlaps are avoided. The methods are typically optimize
produce rather high densities with rather low degree of or
in a rather low amount of CPU time and are not basica
intended to simulate the dynamics that might be found in r
systems. Structural properties of the resulting dense m
stable fluids depend on the densification method. It is unc
how much the behavior of a subsequentNVE simulation is
influenced by the artificial compression methods used to g
erate the high density fluid states. In this paper we presen
application to this problem of a molecular dynamics simu
tion method for hard sphere systems in theNPT ensemble,
where the external pressurePE , the number of spheresN
and the temperatureT is kept fixed. This method allows us t
replace the two-step process of densifying a low density s
tem and then applyingNVE molecular dynamics by one con
tinuous NPT simulation that traces the development of
highly ordered dense state from a low density fluid state

Molecular dynamics simulations at a constant press
have become a standard method for the computational in
tigation of soft potential model systems@33,34#. Soft poten-
tial fluids in the NPH ensemble, in which a system ofN
molecules in a fluctuating volumeV is exposed to a constan
pressurePE at a constant enthalpyH5U1PEV, are typi-
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cally studied by a method originally introduced by Anders
@35#. In 1986 de Smedtet al. @36# described an adaptation o
the Andersen algorithm to hard sphere systems inn dimen-
sions. In a recent paper@37# we presented an implementatio
of the de Smedt analysis and demonstrated its accuracy.
finds that for a hard sphere system in theNPH ensemble a
one-step crystallization process starting from a low den
fluid is impossible@37#. Thus we modified the de Smed
method to enableNPTensemble simulations which are mo
suitable for crystallization. Accuracy tests of theNPT algo-
rithm were also presented in Ref.@37#.

The purpose of this paper is to describe the application
constant pressure molecular dynamics to crystallization
hard sphere systems, including the case of binary mixtu
For single component systems, simulations are performed
various values ofPE /T starting from a low density fluid
state. During the simulation run the system increases in d
sity. Depending on the chosen value ofPE /T the system
might end up in a metastable fluid state or crystallizat
may set in. The fluctuating volume allows changes of
system’s state that may otherwise be strongly hindered
free energy barriers or that may be prevented if the ph
space is really divided into isolated glasses. During the cr
tallization process, the time development of the system d
sity, the degree of crystalline order, and the degree of
order is analyzed at constant pressure. The mutual de
dence of these quantities is investigated and used to ide
the metastable fluid states at a given pressure. The result
compared to those from previousNVE ensemble simula-
tions. We apply a similar procedure to study the crystalliz
tion of several binary mixtures for several size ratios a
compositions.

The remainder of this paper is organized as follows.
Sec. II a short description of the algorithm is given togeth
with an introduction of the used order parameters. Techn
details of the simulation are given in Sec. III. Section IV
devoted to the presentation of the results and in Sec. V s
mary and conclusions are given.

II. THEORETICAL BACKGROUND

The algorithm used in the present work is described
detail in Ref.@37#. In general, molecular dynamics simula
tions of hard sphere systems consist of three fundame
steps:~i! estimation of collision times;~ii ! propagation of the
system towards the next collision event; and~iii ! calculation
of the impact of the collision upon the system. For conv
nience we review the essential aspects of how these t
steps are implemented in the constant pressure algorithm

A. The algorithm

We consider a system ofN hard spheresi with massesmi
and coordinatesr i . The system is situated in a cubic sim
lation box with periodic boundary conditions. In theNPH
and theNPT ensembles the volumeV of the cube is a dy-
namical variable and the coordinates are expressed in
duced form,V1/3qi[r i .

Following Andersen@35#, we use the Lagrangian
3-2
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L5
V2/3

2 (
i 51

N

mi q̇i•q̇i2U~ . . . ,V1/3qi , . . . !

1
1

2
MV̇22PEV, ~2.1!

wherePE is the external pressure andM is a system param
eter, which determines the dynamics of the volume chan
The spheres interact with each other via the hard sphere
tential that assumes that molecules perform hard elastic
lisions at a distances that for mixtures is typically chosen t
be s51/2(s i1s j ).

1. Motion between two collisions

Between two collisions the potentialU( . . . ,V1/3qi , . . . )
in Eq. ~2.1! is zero. From the Lagrangian equations

mi q̈i522mi q̇i

V̇

3V
~ i 51, . . . ,N! ~2.2!

MV̈5
1

3V1/3 (
i

mi q̇i
22PE , ~2.3!

which form a set of 3N11 coupled differential equations
one differential equation for the volume can be extracted

V̈~ t !5
2C

3M
V25/3~ t !2

PE

M
. ~2.4!

Here the constant

C[V0
4/3(

i

mi

2
~ q̇i

0!2 ~2.5!

depends onV0[V(t0) andq̇i
0[q̇i(t0) at the beginningt0 of

the considered time interval.
Since there is no closed form expression for the analyt

solution of Eq.~2.4! we integrate Eq.~2.4! numerically by
using a velocity-Verlet-like approximation@33# for small
time stepst̃ 5t2t0,

V~ t !'V~ t0!1V̇~ t0! t̃ 1
1

2
V̈~ t0! t̃ 2

V̇~ t !'V̇~ t0!1
1

2
t̃ @V̈~ t0!1V̈~ t !#. ~2.6!

Here the second derivative ofV is given by Eq.~2.4!.
From Eq.~2.2! one has

q̇i~ t !5kiV
22/3~ t ! with ki[q̇i~ t0!V2/3~ t0!. ~2.7!

For small t̃ the unscaled coordinatesqi(t) themselves can be
estimated by a Taylor expansion
06170
e.
o-
l-

al

qi
1'qi

01q̇i~ t0! t̃ 1
1

2
q̈i~ t0! t̃ 25qi

01q̇i~ t0! t̃ 2q̇i~ t0!
V̇0

3V0
t̃ 2.

~2.8!

2. Estimating the next collision time

If the next collision between two hard spheres occurs a
time t1 that is not too far fromt0 the system can be propa
gated directly tot1. A pair of moleculesi andj collides if the
relation

V2/3~ tc!iqi j i2~ tc!5s2 ~2.9!

with qi j 5qj2qi is fulfilled. A second-order Taylor approxi
mation for the left hand side of Eq.~2.9! leads to a quadratic
function for tc in which all parameters are determined fro
the discretized equations of motion.

3. Collision behavior

The hard sphere collision behavior in theNPH ensemble
can be taken from Ref.@36#. For two colliding spheresi and
j with reduced coordinatesqi andqj and reduced velocities
q̇i and q̇j one gets

q5qj2qi Dq̇j5
t̄ d

mjs
q ,

q̇b5s21V1/3~ q̇j
b2q̇i

b!•q Dq̇i52
t̄ d

mis
q ,

t̄ d52

2mFV1/3q̇b1s
V̇b

3V
G

11
ms2

9MV2

DV̇5
s t̄ d

3MV
.

B. Hard spheres in theNPT ensemble

The algorithm described above correctly yields the h
sphere system dynamics in theNPH ensemble~see Ref.
@37#!. However, in experiments typically the temperature
kept constant rather than the enthalpy so that anNPT simu-
lation is closer to the typical conditions in a freezing proce
Moreover, the constant enthalpyH in the NPH ensemble
leads to the equation

const5H5E1PEV5
3N22

2
kT1PEV, ~2.10!

which for largeN leads to a hyperbolic relation between th
fluctuating quantitiesPE /T andr,

H

NPE
5

3

2 S PE

kTD 21

1r21 ~N→`!. ~2.11!

For the melting point with PEs3/kT'11.59 and rs3

'1.041 one has
3-3
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H

NPE
'1.09s3'

1

0.92
s3. ~2.12!

Since the left hand side remains constant in theNPH en-
semble neither the melting point nor any other solid st
point can be reached from an initial fluid state with a dens
lower thanrs3,0.92. This is a big disadvantage for th
investigation of crystallization processes, becausers3

50.92 corresponds to a very dense fluid state with a h
degree of local order.

For all these reasonsNPT ensemble simulations are pre
erable toNPH simulations for the study of quenching pro
cesses. If one starts with the Lagrangian equations in
duced by Nose´, one can easily derive equations of motion f
theNPT ensemble of hard spheres but the implementatio
very CPU time consuming so that appropriate system s
and sufficiently long simulation runs become impractic
Therefore, we used the same algorithm as derived for
NPH ensemble and added a velocity rescaling step a
each time propagation so that

const5kT5
2

3~N21!11 S (
i 51

N
mi

2
V2/3q̇i

21
M

2
V̇2D .

~2.13!

Tests that demonstrate the accuracy of thisad hocalgorithm
are reported in Ref.@37#.

C. Crystalline order parameters

Although the interpretations of the metastable flu
branch may vary, the observed simulation results from
ferent research groups appear to match very well over
investigated density region. Generally one could describe
metastable fluid branch as the set of state points (h,P) each
having the following properties:~1a! The volume fractionh
is larger than the freezing volume fractionhcryst ; ~1b! For a
given h the pressureP is the lowest pressure for which th
system does not show crystalline order. Equivalently
state points can be characterized by the properties:~2a! The
pressureP is larger than the freezing pressureP(hcryst); ~2b!
For the given pressure the volume fractionh is the highest
volume fraction for which the system does not show crys
line order. These characterizations imply that there is a
terion for the existence of crystalline order in the system
macroscopic crystalline state is characterized by a th
dimensional long range spatial order. During the crystalli
tion process, however, parts of the system might show lo
crystalline order while others are still fluid. The princip
axes of the developing crystalline order are generally
ented randomly. Several methods have been develope
detect crystalline order in a system and to quantify the
gree of crystalline order for a cluster of molecules. So
information can be extracted from the radial distributi
function g(r ). The appearance of crystalline order is r
flected in characteristic peaks and shoulders ing(r ), but
these indicators may not be clear if the degree of crystal
order is low @15#. The local crystalline order can also b
specified by analyzing the~modified! Voronoi polyhedron
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around a molecule in the system@38,39#. Unfortunately, this
method is not very helpful for the important case of fcc o
der, where small fluctuations of the local order lead to stro
topological changes in the Voronoi polyhedra.

Another approach is based on the correlation of bond v
tors r between a molecule of choice and its neighbo
@40,41#. The set of neighbor molecules can be defined as
molecules within a cut-off radius around the central m
ecule, or theK closest molecules or molecules who
Voronoi polyhedron shares a polygon with the polyhedron
the central molecule. In the following a cut-off radius w
used to determine the neighbors. Crystalline order par
eters can then be defined with the help of spherical harm
ics

Qlm~r !5Ylm„u~r !,f~r !…. ~2.14!

These quantities are dependent on the choice of the coo
nate frame. One can form second-order invariants

Ql5S 4p

2l 11 (
m52 l

l

uQlm̄u2D 1/2

, ~2.15!

where the bar denotes the average over all neighbors o
considered molecule. It was found thatQ6 is a very sensitive
parameter for overall crystalline order@15,16,21#. For an in-
finite and perfectly disordered fluid systemQ650. For finite
systemsQ6 gives a small finite value due to thermal fluctu
tions. For fcc, bcc, hcp, and simple cubic crystals,Q6 is
distinctly larger than zero as shown in Table I.

More detailed information about the local crystalline o
der can be extracted from the third-order invariants@42#

Ql 1l 2l 3
5 (

m11m21m350
S l 1 l 2 l 3

m1 m2 m3
DYl 1m1

Yl 2m2
Yl 3m3

.

~2.16!

An extremely useful indicator for fcc clusters isQ446. In a
histogram ofQ446 fcc clusters form a peak aroundQ446
52.531023 that is well separated from a second pe
aroundQ44650 formed by all other symmetries of cluster
As suggested in Ref.@42# one can declare a cluster to b
fcc-like if its value of Q446 is larger thanQ446.0.0007
which approximately corresponds to the minimum betwe
the two peaks.

TABLE I. Values ofQ6 for different cluster types.

Cluster type Q6

Icosaeder 0.66332
Fcc 0.57452
Hcp 0.48476
Bcc 0.51059
Simple cubic 0.35355
Random order 0.00000
3-4
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III. SIMULATION PROCEDURE

Our first goal is the analysis of the dynamical behavior
one-component hard sphere systems subjected to a su
quench caused by an abrupt increase of the external pre
PE .

In most cases one-component systems were investig
with N52048 spheres. Comparative simulations withN
5864 spheres did not show essential size effects besi
faster crystallization of the latter systems. A number of
nary mixture simulations were then performed withN5864
spheres. A maximum time propagation step oftmax* 51024 in
units ofsAm/kT was set to ensure that the calculation er
for the next collision time of spheres remains accepta
small.

At the beginning of each one-component system run
random fluid state is created by relaxing an fcc ordered s
tem with an external pressure ofPEs3/kT52.0 over a time
period of t relax543106tmax during which about 1.43106

collisions took place. After the relaxation time the syste
has reached the equilibrium densityrs350.285 in accord
with the Carnahan-Starling equation and the radial distri
tion function matches the results from a correspond
Monte Carlo simulation in theNVT ensemble. The crystal
line order parameter levels off to a finite value between 0
and 0.02 which is a size effect of the finite system withN
52048 particles. After the relaxation process the pressur
increased to the value of interest and the time developm
of the system is investigated.

For the binary mixtures simulations were started w
PEsAA

3 /kT52.0 wheresAA is the contact distance of two A
component spheres. AccordinglysAB and sBB denote the
contact distance of anA and a B sphere and the contac
distance of twoB spheres, respectively. At the beginning
the simulations the two species were distributed randomly
fcc lattice sites. After the initial equilibration time with
PEsAA

3 /kT52.0 the fluid character of the system w
checked as described for the one-component systems.

IV. RESULTS

A. One-component systems

As we mentioned in the Introduction, in previous wo
crystallization processes and the metastable branch of
sphere one-component systems were investigated in
NVE ensemble where the total energy and the density of
system is constant@15,16,22,23#. To set up such simulation
a densification algorithm is applied on a low density flu
state~see Ref.@30–32,14#!. These algorithms typically pro
duce high density states with a pressure higher than tha
the metastable branch. As the MD simulation is started,
equilibration process sets in. At constant density the pres
diminishes as the system approaches the metastable br
This relaxation process may have superimposed upon
crystallization process that drives the system from the m
stable branch towards the stable solid branch. If relaxa
and crystallization times are of the same order of magnitu
the determination of the pressure value for the metast
branch becomes difficult.
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In NPT molecular dynamics simulations the pressurePE
is an external parameter. If the external pressure for a
density fluid hard sphere system is increased in a one-
process, the system responds with a rapid increase of
density. Afterwards the time dependence of the density va
from each individual run to the next, but qualitative simila
ties are found for the differentr(t) obtained in various runs
of systems withN52048, 864, and 128. In Fig. 1 a typical
example for the time dependence of the density of an
tially dilute fluid state is shown forPEs3/kT522. There is a
steep increase of the density until a value of aboutrs3

'1.06 is reached. From there the average density incre
very slowly before another rapid increase of the density s
in that ends atrs3'1.155. At this value the density remain
until the end of the simulation run. The intermediate tim
interval with the slowly rising densityr(t) is reminiscent of
the decrease inPE(t) in NVE simulations around the meta
stable state. In some simulation runs the increase ofr(t)
after the first plateau took place in two or more steps.

For a more detailed picture, it is helpful to consider t
crystalline order parameter. A plot ofQ6(t) as a function of
time is given in Fig. 2. It starts with a slow increase fro
Q6'0.02 toQ6'0.07 spanning the time interval where als
r(t) has a small slope. Then abruptly a fast increase ofQ6
sets in that ends atQ6'0.46 beyond which the crystalline
order increases only slightly.

Though the functionsr(t) and Q6(t) were varying with
each simulation run there was always a striking correlat
between the time behavior of the two quantities in each
dividual run. Thus it is worthwhile to plotQ6 as a function of
r. This is done in Fig. 3 for three independent runs w
PEs3/kT522. Evidently the three curves match well with
the statistical fluctuations. Apparently there is a well defin
value for r beyond which the order parameter abruptly b
gins to grow. This value ofr coincides with the metastabl
state at the given pressure@14,16,21#. If we reconsider the
time dependence ofr(t) andQ6(t) it turns out that the meta

FIG. 1. Typical example of the time dependence of the redu
density r* 5rs3 as a function of timet* 5t/(sAm/kT) for
PEs3/(kT)522.0.
3-5
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stable state corresponds to the starting point of the slow
crease inr shown in Fig. 1.

It is an open question whether crystallization sets in for
densities below the random close packing value ofr'0.64
or if beyond a certain density the metastable branch con
of glassy states at which crystallization processes are c
pletely absent. Rintoul and Torquato@15,16# observed small
signs of crystallization even for high densities while Richa
et al. @21# present a curve ofQ6 values over the volume
fractionh after 109 collisions, which is almost zero not onl
for small volume fractions but also for volume fraction

FIG. 2. Time dependence of the crystalline order parameterQ6

as a function of timet* 5t/(sAm/kT) for the same simulation run
as was used for Fig. 1 withPEs3/(kT)522.0.

FIG. 3. Crystalline order parameterQ6 as a function of the
reduced densityr* 5rs3 taken from three individual simulation
runs with PEs3/(kT)522.0. Substantial crystalline order is foun
for densities higher thanrmeta* '1.076 that coincides with the dens
fluid metastable state. The finite value ofQ6 for densities below
rmeta* is caused by finite size effects.
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larger thanh50.6. In other words in theirNVE ensemble
simulations they observe crystallization for volume fractio
0.56<h<0.6. Speedy reports that crystallization takes pla
in the region 0.53<h<0.58@19#. It is interesting to note tha
Richardet al. as well as Speedy observe crystallization f
volume fractions above the putative thermodynamic gl
transition h'0.57 since a crystallization of a real glas
should, in principle, be impossible. One may argue, howe
that crystallization has already set in during the densificat
process. In ourNPT ensemble simulations crystallizatio
was frequently found in the interval 20.0<PEs3/kT<30.0.
The corresponding volume fractions for the metastable st
lie in the interval 0.55<h<0.58. In some cases crystalliza
tion was found for pressures up toPEs3/kT550.0 corre-
sponding to the metastable stateh50.6.

In Fig. 4 metastable states obtained inNPT ensemble
simulations are presented. In the crystallization region
values were obtained by determining the value ofr beyond
which Q6 increases rapidly withr ~see Fig. 3!. For pressure
values for which no crystallization occurred, an average
the density was taken after the equilibration of the syst
has come to an end, that is after systematic drifts of
density have stopped. Our data is in good agreement w
results published by other groups, although it does sho
somewhat larger scatter. For comparison, results of Rin
and Torquato@16# are also shown in Fig. 4. For volum
fractions up toh,0.57 and for 0.57<h<1.18 the simula-
tion data are described well by the Carnahan-Starling eq
tion and the phenomenological expression Eq.~1.1!, respec-
tively. As mentioned by Speedy, this on its own is n
necessarily a proof of the existence of a second-order tra
tion since the data can be described equally well by a c

FIG. 4. Reduced pressure (P/kT)* 5PEs3/kT versus the re-
duced densityr* 5rs3 for dense metastable fluid states. Resu
from NPT simulations (1) are extracted from individual runs a
constant pressure. For comparison the figure shows results
NVE ensemble simulations@16# (L), the Carnahan-Starling equa
tion @12# continued beyond the freezing point~—!, and a phenom-
enological equation proposed by Speedy~- - -! @see Eq.~1.1!#.
3-6
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tinuous function@14#. For large pressures the observed pa
ing fractions are lower than those from Eq.~1.1!. It is
possible that this discrepancy is due to an unfinished re
ation process.

We have also made some studies where the pressure
increased steadily in the simulations rather than in a sin
quench. Studies were performed for various compress
rates between (dP/dt)* 50.1 and (dPE /dt)* 52.0. Results
for the pressure versus density for two compression r
(dPE /dt)* 50.5 and (dPE /dt)* 52.0 are shown in Fig. 5
For (dPE /dt)* 52.0 no crystalline order was found up to
pressure of (PE /kT)* 5500.0. As the pressure increases t
density approximately follows the metastable branch
though a small systematic deviation towards lower densi
is noticeable. This is expected for high compression ra
where the equilibration process lags behind the compres
process. For (dPE /dt)* 52.0 the deviation from the
Carnahan-Starling equation or Eq.~1.1! is always smaller
than 1.5%. The highest deviation is found for pressure va
around (PE /kT)* 520.0 while for 50.0,(PE /kT)* ,500.0
the density deviation is smaller than 0.6%. With lower co
pression rates the noncrystallized states get closer to
metastable branch, while the crystallization probability
20.0&(PE /kT)* &50.0 increases. The dynamics of the cry
tallization depends individually on the starting conditions b
some characteristics can be extracted. The results in F
with (dPE /dt)* 50.5 are a good example of the behavi
The values are close to the metastable branch up to a p
sure of (PE /kT)* '46 where a distinct additional densifica
tion takes place. It is inviting to assume that the crystalli
tion process starts spontaneously at that pressure value
we find that Q6 increases steadily fromQ6'0.06 at

FIG. 5. Reduced pressure (P/kT)* 5PEs3/kT versus the re-
duced density,r* 5rs3, for dense metastable fluid states fro
NPT simulations with a linearly increasing pressure. Results
shown for pressure increment rates (dP/dt)* 50.5(1) and
(dP/dt)* 52.0 (L). Further the Carnahan-Starling equation@12#
~—!, the Eq.~1.1! by Speedy for metastable fluid states~- - -!, and
the stable branch beyond the freezing point~•••! are shown.
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(PE /kT)* '24 up to a value ofQ6'0.26 at (PE /kT)*
'46 where it gets an additional increase to a value ofQ6

'0.34. Systems staying close to the metastable branch
slowly growing crystalline order were found in several ind
vidual runs. However, for very low compression rat
(dPE /dt)* &0.2 substantial crystallization already sets in
pressures (PE /kT)* '20 and the state points deviate imm
diately from the metastable branch. Generally, the obser
phenomena are in qualitative agreement with observat
made with densification algorithms forNVE ensemble simu-
lations @14#.

Development of fcc order

In the preceding section the typical crystallization dyna
ics in the NPT ensemble was described. As soon as
system approaches the metastable branch there is a
steady increase of the crystalline orderQ6 before, rather
abruptly, a strong increase of crystalline order sets in, wh
typically ends as abruptly as it begins. As mentioned abo
Q6 is an indicator for any sort of crystalline order witho
regard to the particular symmetry. With the help ofQ446
histograms one can determine the quantityNf cc /N that gives
the fraction of spheres that are within an fcc cluster. Figur
shows a typical example of the time dependence ofQ6 and
that of Nf cc /N for PEs3/kT522. It is evident that the
amount of fcc order in the system increases more gradu
with time than doesQ6. At the point where the sudde
growth of Q6(t* ) terminates, (Nf cc /N)(t* ) is still increas-
ing. Thus, in theNPT ensemble, the system, starting from
metastable fluid state, begins to crystallize in a rather sud
process in which the density and the overall crystalline or
parameterQ6 increase rapidly. At the same time a process
fcc cluster development sets in. When the densification of
system has come to an end the amount of fcc order contin
to increase. This motivates the following picture of the cry

e

FIG. 6. Fraction of spheres in fcc clusters~- - - 1 - - -! compared
to the crystalline order parameterQ6 ~—! as a function of timet*
5t/(sAm/kT) for the same simulation run withPEs3/(kT)
522.0.
3-7
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tallization process. Due to the pressure the system
proaches the metastable state, where, for a certain tim
further densification is hindered. The system rearranges
configuration until a further densification is possible. As so
as parts of the system become more compact the whole
tem starts to give way to approach a new configuration w
a distinctly higher density. The new state includes cluster
high density and a correspondingly high degree of crysta
zation order, while the crystal type of each cluster depe
on the individual initial configuration. Now, with a distinctl
slower dynamics fcc clusters rearrange and aggregate to
larger fcc clusters. Interestingly this process does not lea
a further noticeable increase of the density nor to an esse
increase of theQ6 order parameter. This mechanism w
qualitatively reproduced in several individual runs for va
ous system sizes. However, the final value ofNf cc /N
strongly varied with each individual run.

B. Mixtures

The algorithm we are using@37# is already suited to run
NPT molecular dynamics simulations for systems of ha
sphere mixtures. However, to check the accuracy, a num
of fluid equilibrium states were simulated and compared w
predictions of the accurate equation of state for hard sph
systems@43#. A comparison of results is shown in Table I
The discrepancy is never larger than 0.3%.

As mentioned in the Introduction, there is only a sm
number of papers in which crystallization processes of h
sphere mixture systems have been investigated. This is
too surprising since the crystallization process is stron
hindered by the presence of more than one componen
fact mixtures have been used to study the metastable
just because of their tendency to stay fluidlike at conditio
where a one-component system would crystallize@19#.

It is reasonable to expect that the crystallization behav
is not too different from the pure component case if the s

TABLE II. Reduced equilibrium densityrsAA
3 obtained from

NPT simulations of binary hard sphere mixtures with the given s
ratio a, mole fractionxA , and reduced pressurePEsAA

3 /(kT). Re-
sults are compared with the extended Carnahan-Starling equ
by Mansoori and coworkers@43#.

a xA PEsAA
3 /(kT)

rsAA
3

NPT simulation
rsAA

3

Mansoori eq.

0.6 0.25 3.0 1.108 1.109
0.6 0.25 6.0 1.482 1.486
0.6 0.25 9.0 1.713 1.715
0.6 0.5 3.0 0.887 0.889
0.6 0.5 6.0 1.151 1.149
0.6 0.5 9.0 1.306 1.303
0.6 0.75 3.0 0.741 0.741
0.6 0.75 6.0 0.937 0.939
0.6 0.75 9.0 1.054 1.054
0.8 0.25 3.0 0.845 0.846
0.8 0.25 6.0 1.093 1.093
0.8 0.25 9.0 1.237 1.239
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ratio a is close to 1. As an example we present the results
a low density binary mixture fluid witha50.95 and a mole
fraction xA50.7 that is quenched to a pressure
PEsAA

3 /kT526 in comparison with results from a corre
sponding one-component system quench for the A sphere
the same pressure. The radial distribution functionsgAA(r ),
gAB(r ), and gBB(r ), which are shown in Fig. 7, are ver
similar indicating that the two components form a shar
crystal with substitutional disorder. The locations of t
maxima of the respective plots never deviate more th
0.025sA up to the eighth maximum. All these agree close
with theg(r ) function of the quenched and crystallized on
component system~Fig. 7!. However, for the one-componen
g(r ) maxima are shifted slightly but systematically towar
higher values ofr. At the eighth peak the discrepancy b
comes 0.05sA . Interestingly, for larger the peaks in the pair
distribution function for the mixture are slightly more pro
nounced than those for the one-component system altho
the mixture ends up with a lower degree of order than
pure hard sphere system as is shown in Fig. 8.

For a size ratio ofa50.85 crystallization is more hin-
dered. We did not observe crystallization for pressure val
below the pressure of the eutectic point atx'0.26,
PEsAA

3 /kT'23.0 @24#. Crystallization was observed for
system with a mole fraction ofxA50.8 and a pressure o
PE524.0. Thus the point for which we found crystallizatio
lies within the coexistence region of crystallineA and crys-
talline B but we did not see any sign of phase separation. T
g(r ) functions for the crystalline system are shown in Fig.
The sharpness of the peak structure is distinctly redu
compared to that of the pure component system. Moreo
the functionsgAA(r ), gAB(r ), and gBB(r ) show mutually
different structures, proving that now the two species

e

ion

FIG. 7. Pair distribution functionsgAA(r ), gAB(r ), andgBB(r )
for the speciesA and B in a system witha50.95 andxA50.7
crystallized from a fluid phase by applying a pressure
PEsAA

3 /(kT)526.0. Also shown in this figure is the pair distribu
tion function of a single component system (x51.0) at the same
pressure.
3-8
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MOLECULAR DYNAMICS SIMULATIONS OF HARD . . . PHYSICAL REVIEW E64 061703
included in different ways in the crystallized structure. T
system ends up in a partly crystallized metastable alloy
the two components, which is not demixing within the sim
lation time.

The phase diagram of the hard sphere system witha
50.73 shows a eutectic point atx'0.15, PEsAA

3 /kT'32.6
@28#. For pressures betweenPEsAA

3 /kT'11.2 and
PEsAA

3 /kT'32.6 phase regions are found where a fluid m
ture coexists with a pureA or pureB crystal. We focused on

FIG. 8. Time dependence of the crystalline order parameterQ6

as a function of timet* 5t/(sAm/kT) for the binary mixture with
a50.95, xA50.7, andPEsAA

3 /(kT)526.0 ~ - - - ! together with the
one-component results at the same pressure withPEs3/(kT)
526.0 ~—!, already used for the results in Fig. 7.

FIG. 9. Pair correlation functionsgAA(r ), gAB(r ), andgBB(r )
for the speciesA and B in a system witha50.85 andxA50.8
crystallized from a fluid phase by applying a pressure
PEsAA

3 /(kT)524.0. Also shown in this figure is the pair correlatio
function of a single-component system (xA51.0) at the same pres
sure.
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the ~crystal A 1 fluid! coexistence region that is distinctl
more extended in the phase diagram than the~crystal B 1
fluid! phase coexistence region. In Fig. 10 the success of
crystallization attempts at different points in the phase d
gram is noted. The only time we saw signs of crystallizati
for a system of 864 particles was forPEsAA

3 /(kT)528.0,
xA50.9, where there are only 10% of the speciesB left.
Apparently, the mismatch of sphere sizes is so large th
joint crystallization is prevented, while, on the other hand,
phase separation sets in within the quenched system. So
systems remain in metastable fluid states. The fluid states
very well predicted by the equation of state of Manso
et al. @43#.

If a is decreased further the phase diagrams become m
complex as crystalline phases with substitutional order s
asAB, AB2, andAB13 become stable. The hard sphere pha
diagram fora50.43 includes stable crystalA, crystalB, and
crystal AB2 phases @28,27#. For pressures lower tha
PEsAA

3 /kT572.8 only a fluid phase region and a coexisten
region of crystalA and fluid exist. In the coexistence regio
a phase separation process starting from anAB crystal was
observed in a previous work by Trizacet al. @27#. We have
performed someN-P-T simulation runs for this size ratio
with x50.8 andPEsAA

3 /kT528.0. In all simulation runs the
crystalline order parameter increases until it reaches a v
of Q6'0.28. If we consider that due to the lever rule t
system should consist of a crystal fraction and a fluid fr
tion in a mole ratio of about2:5, thecrystalline order pa-
rameterQ6'0.28 is surprisingly high. From the theory it i
expected that the crystallineA phase and the mixed fluid
phase should phase separate. At the end of the simulation
no distinct separation could be observed. However, a cer
coagulation of theB species was found. Spheres of specieA
and B form regions with low crystalline order that enclos
regions of pureA crystals. The effect is rather weak but th
coagulation can be detected indirectly. By taking the dista
of randomly included test points in the simulation volume

f

FIG. 10. Pressure versus composition phase diagram of bi
hard sphere mixtures witha50.73 @28#. The (L) symbols denote
state points where no crystallization has been observed within
simulation runs. Crystallization was found for a systems of 8
spheres at the point denoted by (1) and for small size systems with
256 spheres at the points denoted by (3).
3-9
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the center of mass of the nearestB component sphere, on
can characterize the space not occupied by the specieB.
Figure 11 shows the probabilityPi(r ) that the distance be
tween a randomly inserted point and the nearest B com
nent sphere is larger thanr. This is equivalent to the function
Ev(r ) defined by Torquato and coworkers@44# in their for-
mal treatment of nearest neighbor distributions in assemb
of spherical particles. A tendency toward coagulation of
B particles is detected sensitively by a shift ofPi(r ) towards
higher values ofr. In Fig. 11 functionsPi(r ) are shown for
configurations taken in the fluid state (t* 530.0), for a state
shortly afterQ6 has approached its final value (t* 5600.0)
and for a state at the end of the simulation (t* 51200.0). The
latter curve is shifted towards higher values ofr, indicating
that, to some extent, a phase separation process is init
after the crystallization has set in. This effect was reprodu
in several independent runs but an ongoing phase separ
process beyond the effect shown in Fig. 11 could not
found on the time scales accessible in the current sim
tions.

V. CONCLUSIONS

In this paper we have presented a study of the crystall
tion dynamics in hard sphere systems. TheNPT ensemble
simulation technique enables us to mimic the response
low density system on a quenching process. This can
performed in a one-step process without the need of artifi
preparations of high density fluid states. It proves to be
excellent tool to investigate the dynamics of crystal ord
formation in hard sphere systems.

The metastable fluid branch in the hard sphere phase

FIG. 11. The functionPi(r ) at three stages during a pressu
quench of a binary system witha50.43, xA50.8, and
PEsAA

3 /(kT)528.0. Thethree curves correspond to reduced tim
t* 530.0 (—), t* 5600.0 (- - -), andt* 51200.0 (•••).
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gram of one-component systems could be reproduced in
NPT ensemble proving that the metastability is not caus
by theNVE ensemble in which any fluctuations of the ove
all density are omitted. The metastable branch as obtaine
previous NVE ensemble simulations could be reproduc
within the accuracy of the method. However, no addition
evidence was found for the existence of a thermodyna
glass transition within the metastable fluid branch.

For one-component systems crystallization was freque
observed in the pressure region 20.0<PEsAA

3 /kT<30.0. As
the system crosses the metastable branch, density and
parameter increases are correlated showing a small incr
in the region of the metastable state followed by one or s
eral sudden increases ending up at a value that stays r
constant during the rest of the simulation run. The proc
confirms the dynamics in theNVE ensemble, where it is the
pressure that changes slowly in the vicinity of the metasta
branch and then drops rather quickly towards a final val
At the same time as crystallization sets in, the amount of
clusters within the system starts to increase continuou
This process, however, goes on after the growth ofQ6 has
come to an end. The fcc order arises from an already de
system. The growth of fcc order typically starts from sm
fcc cluster seeds transferring their fcc order on neighbor
non-fcc clusters without changing the overall density of t
system.

The degree to which it is possible to observe crystalli
tion in mixtures of hard spheres depends on the size ratioa.
For a greater than about 0.73, crystallization becomes m
difficult as the size ratio decreases from unity. This is as
ciated with the fact that crystallization involves a change
composition as well as translational order. As would be
pected, for size ratios close to unity, where the stable s
state is a substitutionally disordered solid solution the beh
ior is similar to that seen for single component systems.
a50.85 we also found crystallization into a substitutiona
disordered solid solution for a state where this is metasta
with respect to solid-solid phase separation@24#. Once the
solid phase has formed the process of equilibrating, the c
position distribution becomes too slow to be observed on
time scale of these simulations. If the size ratio is as smal
a50.43, crystallization takes place more easily again. In
coexistence region of theA crystal and a fluid theA species
starts to form crystalline structures. The small spheres of
B species are now small enough to escape from the cry
formation and show a tendency to coagulate in fluid regio
together with a part of theA component. In between the flui
regions, well crystallized fractions of pureA crystals exist.
This result is in accordance with simulation results by Triz
et al. @27# and gives additional insights into the mechanis
and the sequence of the crystallization and the phase se
tion processes. At first, formation of crystalline order tak
place between the large spheres, which is accompanied
distinct increase in the density. Then the system tends
initiate a phase separation process as the developmen
crystalline order between theA component spheres contin
ues. Our results for mixtures give an idea of the kind

:
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results that can be obtained from the present approach
they are somewhat preliminary. It is hoped that future wo
with larger system sizes and longer runs should lead to m
definitive conclusions.
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